
© Copyright National University of Singapore. All Rights Reserved.
© Copyright National University of Singapore. All Rights Reserved.

CS6218. Principles of
Programming Languages &
Software Engineering

Week 2: Background

© Copyright National University of Singapore. All Rights Reserved.

Last Lecture

Logistics

Data-centric systems
What are they?

Why are they important?

Why is it difficult to maintain their correctness?

By what bugs can they be affected?

© Copyright National University of Singapore. All Rights Reserved.

What's a Data-Centric System?

Data is a central asset
Intensional definition

Are AI applications included or not?
If yes, is any application that interacts with an environment data-
centric?

Let's settle on an extensional definition
Included: Database systems, data manipulation frameworks, data
processing engines

Arguable: AI applications

© Copyright National University of Singapore. All Rights Reserved.

Grading for Presentation

Presentation grading
Understands the paper 30%

Own examples, Q/A, critical reflections, …

Structure and content of presentation 30%
thread, well-motivated, figures, …

Presentation style 20%
Appropriate speed, speaking freely, …

Timing (25 - 30 minutes) 20%

© Copyright National University of Singapore. All Rights Reserved.

Additional Notes About Presentations

Read the papers thoroughly and critically
Sometimes requires reading parts of other papers

I can offer to give feedback for the presentation
Coordinate with me when you want to send it to me

© Copyright National University of Singapore. All Rights Reserved.

Grading for Project

Initial report (30%)
Answered main questions

Structure and content

Project artifact (20%)
Quality

Groups of two: contribution

Project report (30%)
Structure and Content

(Short) project presentation (20%)

Bonus points for difficult projects, interesting ideas, …

© Copyright National University of Singapore. All Rights Reserved.

This Lecture

A whirlwind tour on testing-related approaches
Ideas rather than details

Motivation for the upcoming paper presentations

Test oracles for database systems

© Copyright National University of Singapore. All Rights Reserved.

This Lecture

A whirlwind tour on testing-related approaches
Ideas rather than details

Motivation for the upcoming paper presentations

Test oracles for database systems

Multiple students dropped the class,
allowing for a less tight schedule

© Copyright National University of Singapore. All Rights Reserved.

Presentations

Presentations will start one week later (on
06/09/22) and subsequent presentations

will be shifted and combined

© Copyright National University of Singapore. All Rights Reserved.

(Manual) Testing

Testing: Executing the program with the goal to find errors

Dijkstra: “program testing can be used very effectively to show
the presence of bugs but never to show their absence”

Functional vs. non-functional requirements (e.g., performance)

© Copyright National University of Singapore. All Rights Reserved.

Unit Testing

Test a “unit” in isolation

Often synonymous with regression tests
Check that previously-working functionality still works

© Copyright National University of Singapore. All Rights Reserved.

Unit Testing

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[i]

© Copyright National University of Singapore. All Rights Reserved.

Unit Testing

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[i]

© Copyright National University of Singapore. All Rights Reserved.

Unit Testing

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[i]

arr = [3, 1, 2]
bubble_sort(arr)
assert arr == [1, 2, 3] # AssertionError, actual: [1, 2, 1]

© Copyright National University of Singapore. All Rights Reserved.

Unit Testing: MySQL

--source include/have_debug.inc
--source include/have_innodb_max_16k.inc

set global innodb_compression_level = 0;
create table t1 (f1 int primary key, f2 longblob)

row_format=compressed, engine=innodb;
set debug='+d,innodb_zlob_print';
insert into t1 values (1, repeat('+', 1048576));
set debug='-d,innodb_zlob_print';
select f1, right(f2, 40) from t1;
drop table t1;
set global innodb_compression_level = default;

https://github.com/mysql/mysql-server/blob/8.0/mysql-
test/suite/innodb/t/zlob_print.test

https://github.com/mysql/mysql-server/blob/8.0/mysql-
test/suite/innodb/r/zlob_print.result

set global innodb_compression_level = 0;
create table t1 (f1 int primary key, f2 longblob)
row_format=compressed, engine=innodb;
set debug='+d,innodb_zlob_print';
insert into t1 values (1, repeat('+', 1048576));
set debug='-d,innodb_zlob_print';
select f1, right(f2, 40) from t1;
f1 right(f2, 40)
1

+++++++++++++++++++++++++++++++++++++++
+
drop table t1;
set global innodb_compression_level = default;

zlob_print.resultzlob_print.test

© Copyright National University of Singapore. All Rights Reserved.

(Manual) Testing

How can we assess the quality of tests?
Number and importance of found bugs

Code coverage

Mutation testing

© Copyright National University of Singapore. All Rights Reserved.

(Manual) Testing

How can we assess the quality of tests?
Number and importance of found bugs

Code coverage

Mutation testing
Defining and evaluating

metric(s) is a potential project

© Copyright National University of Singapore. All Rights Reserved.

(Manual) Testing

How can we assess the quality of tests?
Number and importance of found bugs

Code coverage

Mutation testing

© Copyright National University of Singapore. All Rights Reserved.

Code Coverage

Idea: check which parts of the code
are covered by tests

Goals
Measure the quality of a test suite

Systematically test code

Various granularities

https://dl.acm.org/doi/pdf/10.1145/366246.366248

© Copyright National University of Singapore. All Rights Reserved.

Code Coverage: Common Metrics

Function coverage =
𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
x 100

Statement coverage =
𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠
x 100

Branch coverage =
𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠
x 100

© Copyright National University of Singapore. All Rights Reserved.

Code Coverage: Function Coverage

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):

if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

Goal: reach 100% function coverage

© Copyright National University of Singapore. All Rights Reserved.

Code Coverage: Function Coverage

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):

if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

bubble_sort([])

© Copyright National University of Singapore. All Rights Reserved.

Code Coverage: Statement Coverage

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):

if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

bubble_sort([2, 1])

© Copyright National University of Singapore. All Rights Reserved.

Code Coverage: Branch Coverage

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):

if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

bubble_sort([3, 2, 1])

© Copyright National University of Singapore. All Rights Reserved.

Code Coverage

Low coverage means that the code is
not tested

100% coverage does not imply that the
program is fully tested

Often reported in the evaluation of
testing approaches

SQL-specific coverage criteria have
been proposed

https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.424

© Copyright National University of Singapore. All Rights Reserved.

Black-, Grey-, and White-box Approaches

No standardized definition

Black-box: no internal information
For example, based on a function’s documentation

White-box: internal information
For example, based on a function’s implementation

Grey-box: some internal information (e.g., coverage)
Relevant for Fuzzing

© Copyright National University of Singapore. All Rights Reserved.

(Manual) Testing

How can we assess the quality of tests?
Number and importance of found bugs

Code coverage

Mutation testing

© Copyright National University of Singapore. All Rights Reserved.

Mutation Testing

Goal
Evaluate the quality of existing tests

Derive new tests

Idea: mutate code in the program, assuming that a test case
“kills” the mutant

Percentage of mutants killed → quality of the test suite

White-box testing technique

© Copyright National University of Singapore. All Rights Reserved.

Unit Testing

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[j]

Step 1: create mutants

i

<

© Copyright National University of Singapore. All Rights Reserved.

Unit Testing

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[i]

Step 2: run test suite for
every mutant: mutants is

killed if test cases fails
run_tests()

© Copyright National University of Singapore. All Rights Reserved.

Unit Testing

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[i]

Step 3: Compute a mutation
score based on the

percentage of killed mutants
Mutation score =

𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠

#𝑚𝑢𝑡𝑎𝑛𝑡𝑠
x 100

© Copyright National University of Singapore. All Rights Reserved.

Automated Testing & Fuzzing

Goal: automatically generate tests or inputs to find bugs

Two related perspectives
Automated testing

Fuzzing

https://fuzzingworkshop.github.io/papers/Zeller-keynote-FUZZING-22.pdf

© Copyright National University of Singapore. All Rights Reserved.

Automated Testing & Fuzzing

https://fuzzingworkshop.github.io/papers/Zeller-keynote-FUZZING-22.pdf

© Copyright National University of Singapore. All Rights Reserved.

Automated Testing & Fuzzing

Automated Testing

Software engineering
community

Test own programs

Knowledge about the domain
& applications

Test oracles

Fuzzing

Security community

Test other programs

Minimal assumptions

Security vulnerabilities

© Copyright National University of Singapore. All Rights Reserved.

Automated Testing & Fuzzing

Automated Testing

Software engineering
community

Test own programs

Knowledge about the domain
& applications

Test oracles

Fuzzing

Security community

Test other programs

Minimal assumptions

Security vulnerabilities

© Copyright National University of Singapore. All Rights Reserved.

Automated Testing

Automation of test case generation and the test oracle

Test Case Test Oracle

© Copyright National University of Singapore. All Rights Reserved.

Automated Testing

Automation of test case generation and the test oracle

Test Case Test Oracle

© Copyright National University of Singapore. All Rights Reserved.

Test Oracle
Incorrect result!

“a test oracle (or just oracle) is a mechanism for
determining whether a test has passed or failed”

https://en.wikipedia.org/wiki/Test_oracle

© Copyright National University of Singapore. All Rights Reserved.

Test Oracle

(Executable) program specification unavailable

Complete vs partial specification

© Copyright National University of Singapore. All Rights Reserved.

Differential Testing

Systems compared
Different implementations
(e.g., JVMs)

Versions (e.g., an old and
new version)

Configurations (e.g., –O0
vs –O3)

Goals: correctness,
performance, … Black-box or white-box

technique?

© Copyright National University of Singapore. All Rights Reserved.

Differential Testing

sorting_algorithms = [bubble_sort, merge_sort, insertion_sort]
while True:

arr = get_random_array() # e.g., [3, 1, 2]
sorted_arrays = [alg(arr) for alg in sorting_algorithms]
all_same = all(sorted_arr == sorted_arrays[0] for sorted_arr in

sorted_arrays)
assert all_same, sorted_arrays

© Copyright National University of Singapore. All Rights Reserved.

Slutz, VLDB 1998

© Copyright National University of Singapore. All Rights Reserved.

Slutz, VLDB 1998

Query
Generator

RS1

RS2

RS3

RS1 = RS2 = RS3?

© Copyright National University of Singapore. All Rights Reserved.

Slutz, VLDB 1998

Query
Generator

RS1 = RS2 = RS3?

RS1

RS2

RS3

✓=

© Copyright National University of Singapore. All Rights Reserved.

Slutz, VLDB 1998

Query
Generator

RS1 = RS2 = RS3?

RS1

RS2

RS3


≠

© Copyright National University of Singapore. All Rights Reserved.

Ghit et al., DBTest ’20

Useful and simple technique

© Copyright National University of Singapore. All Rights Reserved.

Slutz, VLDB 1998

DBMS-specific
SQL

Commo
n SQL
Core

“[…] proved to be extremely
useful, but only for the small

set of common SQL”

© Copyright National University of Singapore. All Rights Reserved.

Differences Between SQL Dialects

https://tomassetti.me/parsing-sql/

© Copyright National University of Singapore. All Rights Reserved.

Differential Testing

“Obvious” approach for systems that implement the same
semantics

Key challenge: how to generate valid test cases that are indeed
expected to produce the same result

C compilers: avoid undefined behavior

Project idea: apply differential testing to a new domain
or test for a different requirement (e.g., performance)

© Copyright National University of Singapore. All Rights Reserved.

Metamorphic Testing

Testing “untestable” systems
no ground truth

Generate a follow-up test cases

Black-box approach

Requires a metamorphic relation
Prime example: sin (π − x) = sin x

https://www.wolframalpha.com/input?i=sin%28x%29

© Copyright National University of Singapore. All Rights Reserved.

Metamorphic Testing

© Copyright National University of Singapore. All Rights Reserved.

Metamorphic Testing

while True:
arr = get_random_array()
if len(arr) >= 1:

sorted_arr = bubble_sort(arr)
random_elem = random.choice(sorted_arr)
arr.remove(random_elem)
sorted_smaller_arr = bubble_sort(arr)
sorted_arr.remove(random_elem)
assert sorted_arr == sorted_smaller_arr,

str(sorted_arr) + str(sorted_smaller_arr)

Check whether the relative order of sorted
elements is maintained when an element is

removed from an input array

© Copyright National University of Singapore. All Rights Reserved.

Example: EMI

https://people.inf.ethz.ch/suz/emi/index.html

© Copyright National University of Singapore. All Rights Reserved.

Xinyue et al. (DBTest’20)

© Copyright National University of Singapore. All Rights Reserved.

Xinyue et al. (DBTest’20)

Manually-specified rules that, when applied,
guarantee that the result does not change

© Copyright National University of Singapore. All Rights Reserved.

Intramorphic Testing

Idea: rather than changing an input or test case, change the
program under test

White-box testing approach

© Copyright National University of Singapore. All Rights Reserved.

Intramorphic Testing

© Copyright National University of Singapore. All Rights Reserved.

Intramorphic Testing

while True:
arr = get_random_array()
sorted_arr = bubble_sort(arr.copy())
reverse_sorted_arr = bubble_sort_reverse(arr.copy())
assert sorted_arr.reverse() == reverse_sorted_arr,

str(sorted_arr) + ' ' + str(reverse_sorted_arr)

© Copyright National University of Singapore. All Rights Reserved.

Property-based Testing

Idea: specify properties that hold for a function (or component)
(Randomly) generate data to test whether these properties indeed hold

Pioneered in QuickCheck
Implemented in ~300 lines of code

© Copyright National University of Singapore. All Rights Reserved.

Property-based Testing

def property_idempotent(l):
double_rev_list = l.copy()
bubble_sort(l)
bubble_sort(double_rev_list)
bubble_sort(double_rev_list)
return l == double_rev_list

© Copyright National University of Singapore. All Rights Reserved.

Property-based: Expected Errors

https://github.com/sqlancer/sqlancer/blob/master/src/sqlancer/duckdb/gen/DuckDBInsertGenerator.java

© Copyright National University of Singapore. All Rights Reserved.

Property-based: Expected Errors

https://github.com/sqlancer/sqlancer/blob/524942f693c0217f459b7565b42bc8515b4f7d92/src/sqlancer/duckdb/DuckDBErrors.java#L81

Some errors are always unexpected
(e.g., database corruptions)

© Copyright National University of Singapore. All Rights Reserved.

Automated Testing

Automation of test case generation and the test oracle

Test Case Test Oracle

© Copyright National University of Singapore. All Rights Reserved.

Generational vs. Mutational

Mutational: start with initial seeds that are mutated

Generational: generate inputs/test cases from scratch

© Copyright National University of Singapore. All Rights Reserved.

(Naïve) Random Testing: Csmith

Random program generator for C

Challenge: generate valid programs
free of undefined behavior

Found hundreds of bugs

https://dl.acm.org/doi/10.1145/1993316.1993532

https://embed.cs.utah.edu/csmith/

© Copyright National University of Singapore. All Rights Reserved.

(Naïve) Random Testing: RAGS

Random SQL query generator

© Copyright National University of Singapore. All Rights Reserved.

(Naïve) Random Testing: SQLsmith

https://github.com/anse1/sqlsmith

Random SQL query generator inspired by Csmith

Reads schema information (+ supported functions)

Generator based on grammar

Adopted by many/most database companies

https://github.com/anse1/sqlsmith

© Copyright National University of Singapore. All Rights Reserved.

Skeletal Program Enumeration (SPE)

Challenge: Obtain test cases with diverse control- and data-
dependencies

Idea: Extract a skeleton that can be parameterized

https://people.inf.ethz.ch/suz/emi/index.html

© Copyright National University of Singapore. All Rights Reserved.

Skeletal Program Enumeration (SPE)

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[j]

https://people.inf.ethz.ch/suz/emi/index.html

© Copyright National University of Singapore. All Rights Reserved.

Skeletal Program Enumeration (SPE)

def bubble_sort(arr):
□ = len(arr)
for □ in range(length):
for □ in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[j]

Variables: length, i, j
SPE describes an algorithm to avoid filling holes

with variables that result in test cases with
redundant control- and data-dependencies

https://people.inf.ethz.ch/suz/emi/index.html

© Copyright National University of Singapore. All Rights Reserved.

Automated Testing & Fuzzing

Automated Testing

Software engineering
community

Test own programs

Knowledge about the domain
& applications

Test oracles

Fuzzing

Security community

Test other programs

Minimal assumptions

Security vulnerabilities

© Copyright National University of Singapore. All Rights Reserved.

(Black-box) Fuzzing

Bart Miller coined the term in 1988

ProgramU39p5jwo3jsasdf… SEGFAULT

© Copyright National University of Singapore. All Rights Reserved.

(Black-box) Fuzzing

https://pages.cs.wisc.edu/~bart/fuzz/CS736-Projects-f1988.pdf

© Copyright National University of Singapore. All Rights Reserved.

Implicit Test Oracles

Crashes

Timeouts

Dynamic Analysis Tools (Sanitizers)

© Copyright National University of Singapore. All Rights Reserved.

Grammar Based Fuzzing/Testing

Idea: use a grammar as a specification

https://github.com/antlr/grammars-v4/blob/master/sql/postgresql/PostgreSQLParser.g4

© Copyright National University of Singapore. All Rights Reserved.

Grey-box Fuzzing

American Fuzzy Lop (AFL)
Lop, not loop

Successor: AFL++

Instruments program to collect coverage
Grey-box fuzzing

Puts more energy into further mutating inputs that cover new
code paths

https://github.com/AFLplusplus/AFLplusplus

© Copyright National University of Singapore. All Rights Reserved.

White-box Fuzzing

Idea: utilize detailed
knowledge about
the program

Symbolically
execute an input

Gather constraints
along the way

Negate constraints
systematically using
a constraint solver

© Copyright National University of Singapore. All Rights Reserved.

Additional Resources

https://www.fuzzingbook.org/

© Copyright National University of Singapore. All Rights Reserved.

Small Scope Hypothesis

Most bugs can be found with small/simple inputs

© Copyright National University of Singapore. All Rights Reserved.

Test Case Reduction

Problem: Automatically
generated test cases are
typically unnecessarily
large

Idea: reduce them

PRAGMA cache_size = 50000;
PRAGMA temp_store=MEMORY;
PRAGMA synchronous=off;
PRAGMA encoding = 'UTF-16be';
CREATE TABLE IF NOT EXISTS t0 (c0 TEXT , c1 INTEGER);
INSERT OR IGNORE INTO t0(c1) VALUES (320), (0X2a1);
PRAGMA incremental_vacuum;
UPDATE OR ABORT t0 SET c1 = '-9223372036854775808' WHERE t0.c0 COLLATE BINARY;
INSERT OR IGNORE INTO t0 VALUES (0x58, 0x2c4), (852, 0X3d4), (384, 0x199), (718, 847);
BEGIN TRANSACTION;
PRAGMA legacy_file_format = true;
UPDATE OR REPLACE t0 SET c0 = 0.03283042105908274, c0 = x'', c1 = 0Xffffffffab13f8ae;
UPDATE t0 SET (c0)=(-1881505887) WHERE ((t0.c1 COLLATE NOCASE)IS NOT(((t0.c0) NOT BETWEEN (t0.c1) AND (t0.c0))));
PRAGMA auto_vacuum;
UPDATE OR IGNORE t0 SET c0 = 'z!vRGBl 2vX?öd☹딦', c1 = -1.424754514E9, c0 = 0.3406202076523681;
UPDATE OR ABORT t0 SET c1 = 0.6840655763518566 WHERE (-45384822 IN ());
UPDATE OR IGNORE t0 SET c0 = 'Xf', c0 = 0Xffffffff8fda7fa1 WHERE (~ ((NOT (t0.c0))));
BEGIN TRANSACTION;
PRAGMA temp.auto_vacuum;
BEGIN TRANSACTION;
ANALYZE;
UPDATE OR REPLACE t0 SET (c0)=(0.06651996418720685);
REINDEX;
REINDEX BINARY;
REINDEX;
COMMIT TRANSACTION;
PRAGMA main.mmap_size;
CREATE INDEX IF NOT EXISTS i48 ON t0((CASE c1 WHEN 0.36391525195019603 THEN c0 WHEN c0 THEN c0 WHEN 'W*' THEN c0
WHEN c0 THEN c1 ELSE 0.19854138768397123 END IN (((c1)&(c0)))) ASC,CAST(c1 COLLATE RTRIM AS BLOB) COLLATE BINARY
DESC);
COMMIT;
ANALYZE;
ROLLBACK TRANSACTION;
COMMIT;
PRAGMA cache_size;
ANALYZE;
BEGIN DEFERRED TRANSACTION;
PRAGMA journal_mode = WAL;
UPDATE OR REPLACE t0 SET c0 = 'j(l恸c
R 寐>H䟉|/FZ]>!', c0 = 0.517704345533682, c0 = NULL;
PRAGMA busy_timeout;
COMMIT;
COMMIT TRANSACTION;
PRAGMA main.soft_heap_limit;
PRAGMA temp.threads = 5428778230116844349;
PRAGMA temp.reverse_unordered_selects = false;
PRAGMA main.journal_mode;
COMMIT TRANSACTION;
CREATE INDEX i88 ON t0(x'',((((DATE(c1, c1, c1, c1))OR(CAST(c0 AS REAL))))AND(((c1) NOT NULL)))) WHERE NULL;

© Copyright National University of Singapore. All Rights Reserved.

Test Case Reduction

Test Case
Property

Check

© Copyright National University of Singapore. All Rights Reserved.

Test Case Reduction

Derive

Test Case
Property

Check

Reduced Test
Case

© Copyright National University of Singapore. All Rights Reserved.

Reduction Tools

C-Reduce

extern int printf (const char *, ...);
static char (safe_1) (char si)
{

return (si == (-128)) ? ((si)) : -si;
}

static char (safe_2) (char si1, char si2)
{

return
(((si1 > 0) && (si2 > 0) && (si1 > ((127) - si2)))
|| ((si1 < 0) && (si2 < 0)

&& (si1 < ((-128) - si2)))) ? ((si1)) : (si1 +
si2);
}
...

#!/bin/bash
grep goto small.c >/dev/null 2>&1

goto

Interestingness test

Reduced test case

Original test case

© Copyright National University of Singapore. All Rights Reserved.

Reduction Tools

Delta Debugging

Perses

SQL-Reduce

…

https://dl.acm.org/doi/10.1145/318774.318946

© Copyright National University of Singapore. All Rights Reserved.

Test Case Deduplication

Problem: testing tools might repeatedly generate bug-inducing
test cases for the same underlying bugs

Idea: Assign test cases that trigger the same bug to different
buckets

AFL deduplicates bugs based on the stack trace

© Copyright National University of Singapore. All Rights Reserved.

Test Case Deduplication

Problem: testing tools might repeatedly generate bug-inducing
test cases for the same underlying bugs

Idea: Assign test cases that trigger the same bug to different
buckets

AFL deduplicates bugs based on the stack trace

© Copyright National University of Singapore. All Rights Reserved.

Related Topics

Static Analysis

Dynamic Analysis

Program Repair

Runtime Verification

Symbolic Execution

Abstract Interpretation

Model Checking

Program Synthesis

Compilation & Optimization

…

© Copyright National University of Singapore. All Rights Reserved.

Static vs. Dynamic Analysis

Static Analysis

Examines the code

Considers all possible
executions (or none)

Often tension between
finding all bugs and reporting
only true bugs

Dynamic Analysis

Analyzes the program while it
is running

Typically considers a single
execution

Typically no false alarms →
every bug reported indicates
a real bug

© Copyright National University of Singapore. All Rights Reserved.

Soundness and Completeness

https://blog.sigplan.org/2019/08/07/what-does-it-mean-for-a-program-analysis-to-be-sound/

© Copyright National University of Singapore. All Rights Reserved.

Additional Resources

https://www.debuggingbook.org/

© Copyright National University of Singapore. All Rights Reserved.

Presentations: Differential Testing

Data-Oriented Differential Testing of Object-Relational Mapping
Systems

APOLLO: automatic detection and diagnosis of performance
regressions in database systems

Test Case Test Oracle

© Copyright National University of Singapore. All Rights Reserved.

Presentations: Metamorphic Testing

Metamorphic testing of Datalog engines

Automatic Detection of Performance Bugs in Database
Systems using Equivalent Queries

Test Case Test Oracle

© Copyright National University of Singapore. All Rights Reserved.

Presentations: Fuzzing

SQUIRREL: Testing Database Management Systems with
Language Validity and Coverage Feedback

BigFuzz: Efficient Fuzz Testing for Data Analytics Using
Framework Abstraction

Test Case Test Oracle

© Copyright National University of Singapore. All Rights Reserved.

Presentations: Fuzzing

Search-based test data generation for SQL queries

Data generation for testing and grading SQL queries
Mutation testing technique

Test Case Test Oracle

© Copyright National University of Singapore. All Rights Reserved.

Presentations: Testing and Synthesis

Torturing Databases for Fun and Profit
Property-based testing

Systems level approach

Synthesizing Analytical SQL Queries from Computation
Demonstration

Program synthesis

© Copyright National University of Singapore. All Rights Reserved.

Presentations: Analysis and Debugging

CheckCell: data debugging for spreadsheets

SQLCheck: Automated Detection and Diagnosis of SQL Anti-
Patterns

© Copyright National University of Singapore. All Rights Reserved.

Presentations: Performance Optimization

View-Centric Performance Optimization for Database-Backed
Web Applications

AIDA - Abstraction for Advanced In-Database Analytics

© Copyright National University of Singapore. All Rights Reserved.

Summary

Manual/unit testing, code coverage, mutation testing

Test oracles: Differential testing, metamorphic testing, property-
based testing, intramorphic testing

Test case generation: generational vs. mutational, automated
testing vs fuzzing

Test case reduction and deduplication

