CS6218. Principles of

Programming Languages &
Software Engineering

Week 2: Background

QL
=
o
o
O
(@)
i
W
Y—
o
=
s
()
s
(=
=)
©
=
s
o+
©
—

© Copyright National University of Singapore. All Rights Reserved

Last Lecture

» Logistics

» Data-centric systems
» What are they?
» Why are they important?
» Why is it difficult to maintain their correctness?
» By what bugs can they be affected?

© Copyright National University of Singapore. All Rights Reserved.

What's a Data-Centric System?

» Data Is a central asset
» Intensional definition

» Are Al applications included or not?
» If yes, is any application that interacts with an environment data-
centric?
» Let's settle on an extensional definition

» Included: Database systems, data manipulation frameworks, data
processing engines

» Arguable: Al applications

© Copyright National University of Singapore. All Rights Reserved.

Grading for Presentation

» Presentation grading
» Understands the paper 30%
» Own examples, Q/A, critical reflections, ...

» Structure and content of presentation 30%
» thread, well-motivated, figures, ...

» Presentation style 20%
» Appropriate speed, speaking freely, ...

» Timing (25 - 30 minutes) 20%

© Copyright National University of Singapore. All Rights Reserved.

Additional Notes About Presentations

» Read the papers thoroughly and critically
» Sometimes requires reading parts of other papers

» | can offer to give feedback for the presentation
» Coordinate with me when you want to send it to me

Grading for Project

» Initial report (30%)
» Answered main questions
» Structure and content

» Project artifact (20%)

» Quality
» Groups of two: contribution

» Project report (30%)
» Structure and Content

» (Short) project presentation (20%)
» Bonus points for difficult projects, interesting ideas, ...

© Copyright National University of Singapore. All Rights Reserved.

This Lecture

» A whirlwind tour on testing-related approaches
» Ideas rather than details
» Motivation for the upcoming paper presentations

» Test oracles for database systems

© Copyright National University of Singapore. All Rights Reserved.

This Lecture

» A whirlwind tour on testing-related approaches

» ldeas rather than details

» Motivation for the upcoming paper presentations

st orselostordetnbean cuclome

© Copyright National

University of Singapore. All Rights Reserve

d.

Multiple students dropped the class,
allowing for a less tight schedule

Presentations

Presenters
Date Presenter
30/08/22 Tan Yu Wei
30/08/22 Nishita Dutta
06/09/22 Wang Jianing
06/09/22 Jiang Yuancheng
13/09/22 Zhang Anxing
13/09/22 Zhong Suyang
27/09/22 Rajdeep Singh Hundal
27/09/22
04/10/22
04/10/22 Yang Ziyi
11/10/22
11/10/22 Kareem Shehata
18/10/22
18/10/22 Ho Han Kit Ivan

© Copyright National University of Singapore. All Rights Reserved.

Paper

Data-Oriented Differential Testing of Object-Relational Mapping ¢
APOLLO: automatic detection and diagnosis of performance regre
Metamorphic testing of Datalog engines

Automatic Detection of Performance Bugs in Database Systems u
SQUIRREL: Testing Database Management Systems with Languag
BigFuzz: Efficient Fuzz Testing for Data Analytics Using Framewor

Search-based test data generation for SQL queries

Synthesizing Analytical SQL Queries from Computation Demonsti

SQLCheck: Automated Detection and Diagnosis of SQL Anti-Patte

AIDA - Abstraction for Advanced In-Database Analytics

Presentations will start one week later (on
06/09/22) and subsequent presentations
will be shifted and combined

(Manual) Testing

» Testing: Executing the program with the goal to find errors

» Dijkstra: “program testing can be used very effectively to show
the presence of bugs but never to show their absence”

» Functional vs. non-functional requirements (e.g., performance)

Unit Testing

» Test a “unit” in isolation

» Often synonymous with regression tests
» Check that previously-working functionality still works

© Copyright National University of Singapore. All Rights Reserved.

Unit Testing

def bubble_sort(arr):
length = len(arr)
for 1 in range(length):
for j in range(@, length - i - 1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

© Copyright National University of Singapore. All Rights Reserved.

Unit Testing

def bubble_sort(arr):
length = len(arr)
for 1 in range(length):
for j in range(@, length - i - 1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

%

Unit Testing

def bubble_sort(arr):

length = len(arr)

for 1 in range(length):

for j in range(@, length - i - 1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i] Ve

arr = [3, 1, 2]
bubble sort(arr)
assert arr == [1, 2, 3]

© Copyright National University of Singapore. All Rights Reserved.

Unit Testing: MySQL

zlob_print.test

zlob_print.result

--source include/have_debug.inc
--source include/have_innodb_max_16k.inc

set global innodb_compression_level = 0;

create table t1 (f1 int primary key, f2 longblob)
row_format=compressed, engine=innodb;

set debug="+d,innodb_zlob_print’;

insert into t1 values (1, repeat('+', 1048576));

set debug="-d,innodb_zlob_print’;

select f1, right(f2, 40) from t1;

drop table t1;

set global innodb_compression_level = default;

set global innodb_compression_level = 0;
create table t1 (f1 int primary key, f2 longblob)
row_format=compressed, engine=innodb;
set debug="+d,innodb_zlob_print’;
insert into t1 values (1, repeat('+', 1048576));
set debug="-d,innodb_zlob_print’;
select f1, right(f2, 40) from t1;
f1 right(f2, 40)
1

S B o N Y
+
drop table t1;
set global innodb_compression_level = default;

https://github.com/mysqgl/mysql-server/blob/8.0/mysqgl- https://github.com/mysqgl/mysql-server/blob/8.0/mysql-

test/suite/innodb/t/zlob_print.test

© Copyright National University of Singapore. All Rights Reserved.

test/suite/innodb/r/zlob_print.result

(Manual) Testing

» How can we assess the quality of tests?
» Number and importance of found bugs
» Code coverage
» Mutation testing

© Copyright National University of Singapore. All Rights Reserved.

(Manual) Testing

» How can we assess the quality of tests?
» Number and|importance of found bugs|
» Code coverage

. .) — .
Mutation testing Defining and evaluating

metric(s) is a potential project

(Manual) Testing

» How can we assess the quality of tests?
» Number and importance of found bugs
»| Code coverage|
» Mutation testing

© Copyright National University of Singapore. All Rights Reserved.

Code Coverage

» Idea: check which parts of the code
are covered by tests

» Goals
» Measure the quality of a test suite
» Systematically test code

» Various granularities

https://dl.acm.org/doi/pdf/10.1145/366246.366248

© Copyright National University of Singapore. All Rights Reserved.

Systematic Mistake Analysis of
Digital Computer Programs
Joan C. Mirer ann Coerorn J. Manosgy®

U, 8. Army Chemical Corps,
Fart Detrick, Frederiek, M arylad

Introduction

Effective program checkout is imperative to any com
plex computer program, One or more test cases are always
run for a program hefore it is considered ready for applicn-
tion to the actual problem. Each test case checks that
portion of the program actually used in its computation,
Too often, however, mistakes show up as lafe as several
munthe (or even years) after a progeam has been pul inbe
operation, Thiz s an indication that portions of the
program called upon only by rarely ceeurring input condi-
tions have not been praperly tested during the checkout
stage.

In order to rely with confidence upon any partienlar
program, it is not sufficient to know that the program
works maost of the time or even that it has never made &
mistake so far. The real question is whether it can be
eounted upon to fulfill its functional specifications sue-
eossfully every single time. Thiz meansz that, after a
program has passed the checkout stage, there should be no
possibility that an unusual eombination of input data or
conditions may bring to hght an unexpected mistake in
the program. Every portion of the program must be
utilized during checkout in order that its correctness may
he confirmed.

The purpose of work reported here has been to develop
a systematic way in which a programmer may test all
realistic combinations of input data, and henee all portions
of & given program. Although at first this scoms to be an
arduons task, its handling is simplified by an orderly
approach, and its i o greater assurance of the
vorrectness and reliability of the program. The polential
number of test cases is given by 2%, where B is the number
of branchpoints in the flowehart. The eomputer eould
he programed to generate all of these cases sutomatically.
However, if the number of branchpoints is at all large,

E

* Now at the Division of Bielogics Standards, Natienal Tnsti-

g
C. L. McCARTY, Jr., Eﬂlh!

the total number of potential cases would become |
practically lange, though most of these would be unreslistic
or identical to other eases and hence unnecessary to test.
The analysis set forth in this paper has as its object the
determination by straightforward means of the full list of
possibile—as opposed to potential —test eases, their method
of ient generation and their use in the loeation of
mistakes in the program

Ih| approach taken here of using varied input condi-
tions as the means to insure thorough testing of the pro.
gram is particularly applicable to business problems—
beeause o wide variety of input i one of the major aspects
of such a problem. The method can be extended, however,
to deal effectively with scientific problems, even though
some of their branchpoints will not be dependent upon
the input data, The provedure should therefore be useful
as a method for systematie mistake analysis of eomputer
programs irtespective of the type of program to be
analyzed.

-

Background

Probably the most eommon method of mistake de-
tection is the running of a test case whese answers hxu-
already been caleulated dlsewhere for enmparison,
fully chosen test data can be quite sueeessful in pmrmm,
up the major mistakes, Other methods of mistake preven-
tion which can be effective are {a) to code into the program
certain chocking deviees such as intermediate eheck sums,
and (b) to write the code in such a way that it will be
easy to cheek, even at the expense of certain sophistica
tions and time-saving deviees [1]. It is always helpful to
make o detsiled manual check of the code as written,
prior to the first machine run. In addition to reviewing the
coding, a second flowehart can be drawn, this time pre-
pared directly from the coding, to determine whether
the program exceutes its insiructions aceording to the
original plan.

An inereasing number of checkout methods make use
of the facilities of the machine itself. Some of the mare
common methods [2] are manual step-by-step operation,
dumping of memory, a tracing program with automatie
skips nnd the use of the break jump switeh, which will
stop the program and jump to any specified location, Jacoby
and Layton [3] reported on an automated dingnostie
program that runs the program to be tested, creating o
trace record for later analysis by the disgnostic itsell.
Haibt [4] has deseribed a program that enables the com-

Code Coverage: Common Metrics

executed functions
/ x 100

functions
executed statements
x 100

» Function coverage =

» Statement coverage =
statements
ted b h
execute rancnes X 100

’ p—
Branch coverage # branches

© Copyright National University of Singapore. All Rights Reserved.

Code Coverage: Function Coverage

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(@, length - 1 - 1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

Goal: reach 100% function coverage

Code Coverage: Function Coverage

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(9, length - i - 1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

bubble sort([])

Code Coverage: Statement Coverage

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

bubble sort([2, 1])

Code Coverage: Branch Coverage

def bubble_sort(arr):
length = len(arr)
for i in range(length):

for j in range(@, length - 1 - 1):
iflarr[]j] > arr[j+1]:
arr{J], arr|J+1] = arr[j+1], arr[i]

bubble sort([3, 2, 1])

Code Coverage

Full predicate coverage for testing SQL database queries

» Low coverage means that the code is

Department of Computer Science, University of Oviedo,

n Ot te Ste d Campus of Viesques, s/n, 33204 Gijon (SPAIN)

SUMMARY

7 ML) 1 1

In the field of database applications a part of the busi logic is imp

} 1000/ d t m | th t th using a semi-declarative language: the Structured Query Language (SQL). Because of the
0 Cove rag e O e S n O I p y a e different semantics of SQL pared to other f dural I the conventional coverage

criteria for testing are not directly applicable. This paper presents a criterion specifically tailored

. for SQL queries (SQLFpc). It is based on Masking Modified Condition Decision Coverage

ro ral I l IS fu | I te Ste d (MCDC) or Full Predicate Coverage and takes into account a wide range of the syntax and

semantics of SQL, including selection, joining, grouping, aggregations, subqueries, case

expressions and null values. The criterion assesses the coverage of the test data in relation to the

query that is executed and it is expressed as a set of rules that are automatically generated and

1 1 efficiently evaluated against a test . The use of the criterion is illustrated in a case study
e n re p O r e I n e eva u a. I O n 0 which includes complex queries.

KEY WORDS: software testing; database testing, MCDC, Full Predicate Coverage, SQL

.
te Stl n a ro aC h eS * Correspondence to: Javier Tuya, Departamento de Informatica, Universidad de Oviedo, Campus de
Viesques s/n, E-33207 Gijon (SPAIN)
4) 985 182 049, FAX: (34) 985 181 986
E-mail: tuya@uniovi.es

Contract/grant sponsor: Department of Science and Innovation (Spain) and ERDF Funds; contract/grant

» SQL-specific coverage criteria have o
Contract/grant sponsor: Government of the Principality of Asturias; contract/grant number: CN-07-168

Contract/grant sponsor: Government of Castilla-La Mancha; contract/grant number: PAC08-121-1374

been proposed 1. WTRODUCTION

Database applications involve the management of large amounts of data stored and organized in
many tables. Although there have been developments in object oriented databases and more
rct,unlly in eXtensible Markup Lang (XML) datab most lications still maintain the
data using Relational Database Management Systems (DBMS) that | pmvndc a high performance
and a high degree of scalability and dependability. Different solutions to manage the data have
been developed (such as persistence systems or object/relational mappings). However, the
Structured Query language (SQL) [1] is still widely used, especially when its full expressive

https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.424

© Copyright National University of Singapore. All Rights Reserved.

Black-, Grey-, and White-box Approaches

» No standardized definition

» [BJElgledd: No internal information
» For example, based on a function’s documentation

» White-box: internal information
» For example, based on a function’s implementation

» Grey-box: some internal information (e.g., coverage)
» Relevant for Fuzzing

(Manual) Testing

» How can we assess the quality of tests?
» Number and importance of found bugs
» Code coverage
» Mutation testing|

© Copyright National University of Singapore. All Rights Reserved.

Mutation Testing

» Goal
» Evaluate the quality of existing tests
» Derive new tests

» Idea: mutate code in the program, assuming that a test case
“kills” the mutant

» Percentage of mutants killed - quality of the test suite
» White-box testing technique

Unit Testing

def bubble_sort(arr):
length = len(arr)
for 1 in range(length): i
for j in range(@, length - i - 1):
if arr[j] > arr[j+1]: ‘///’
arr[j], farr[j+1] = arr[j+1], arr[j]

< Step 1: create mutants

Unit Testing

def bubble_sort(arr):
length = len(arr)
for 1 in range(length):
for j in range(@, length - i - 1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

Step 2: run test suite for
killed if test cases fails

© Copyright National University of Singapore. All Rights Reserved.

Unit Testing

def bubble_sort(arr):
length = len(arr)
for 1 in range(length):
for j in range(@, length - i - 1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

Step 3: Compute a mutation

. # killed mutant score based on the
Mutation score = Lecmmane x 100

mutants percentage of killed mutants

© Copyright National University of Singapore. All Rights Reserved.

Automated Testing & Fuzzing

» Goal: automatically generate tests or inputs to find bugs

» Two related perspectives
» Automated testing
» Fuzzing

© Copyright National University of Singapore. All Rights Reserved. https://fuzzingworkshop.github.io/papers/Zeller-keynote-FUZZING-22.pdf

Automated Testing & Fuzzing
s ICISPA

HELMHOLTZ CENTER FOR
*:\ INFORMATION SECURITY

1
k 4

Cultures

Fuzzing: A Tale of £

Fuzzing Workshop @ NDSS'22 - April 24, 2022

© Copyright National University of Singapore. All Rights Reserved. https://fuzzingworkshop.github.io/papers/Zeller-keynote-FUZZING-22.pdf

Automated Testing & Fuzzing

Automated Testing

Software engineering
community

Test own programs

Knowledge about the domain
& applications

Test oracles

Fuzzing
» Security community

» Test other programs
» Minimal assumptions
» Security vulnerabilities

Automated Testing & Fuzzing

Automated Testing

Software engineering
community

Test own programs

Knowledge about the domain
& applications

Test oracles

Fuzzing
» Security community

» Test other programs
» Minimal assumptions
» Security vulnerabilities

Automated Testing

» Automation of test case generation and the test oracle

Test Case E":,'ZI Test Oracle

Automated Testing

» Automation of test case generation and the test oracle

Test Case E":,'ZI Test Oracle

Test Oracle

Incorrect result!

“a test oracle (or just oracle) is a mechanism for
determining whether a test has passed or failed”

https://en.wikipedia.org/wiki/Test_oracle

© Copyright National University of Singapore. All Rights Reserved.

Test Oracle

» (Executable) program specification unavailable
» Complete vs partial specification

Differential Testing

» Systems compared

» Different implementations
(e.g., JVMSs)

» Versions (e.g., an old and
new version)

» Configurations (e.g., —O0
vs —03)

» Goals: correctness,
performance, ...

© Copyright National University of Singapore. All Rights Reserved.

Differential Testing

SUT,

A 4
Q

results

matth — ‘/

\ 4

SUT,

¥
Q

Results
mIsmatch_b x

SUT;

v
Q

Black-box or white-box
technique?

Differential Testing

sorting_algorithms = [bubble_sort, merge_sort, insertion_sort]
while True:

arr = get_random_array()

sorted arrays = [alg(arr) for alg in sorting algorithms]

all same = all(sorted arr == sorted arrays[@] for sorted_arr in
sorted_arrays)

assert all same, sorted arrays

© Copyright National University of Singapore. All Rights Reserved.

Slutz, VLDB 1998

© Copyright National Universit

Massive Stochastic Testing of SQL

Don Slutz
Microsoft Research
dslutz @Microsoft.com

Abstract

Deterministic testing of SQL database systems is
human intensive and cannot adequately cover the
SQL input domain. A system (RAGS), was built
to stochastically generate valid SQL statements 1
million times faster than a human and execute
them.

1 Testing SQL is Hard

Good test coverage for commercial SQL database
systems is very hard. The input domain, all SQL
statements, from any number of users, combined with
all states of the database, is gigantic. It is also diffi-
cult to verify output for positive tests because the
semantics of SQL are complicated.’

Software engineering technology exists to pre-
dictably improve quality ([Bei90] for example). The
techniques involve a software development process
including unit tests and final system validation tests
(to verify the absence of bugs). This process requires
a substantial investment so commercial SQL vendors
with tight schedules tend to use a more ad hoc proc-

distribute the SQL statements in useful regions of the
input domain. If the distribution is adequate, stochas-
tic testing has the advantage that the quality of the
tests improves as the test size increases [TFW93].

A system called RAGS (Random Generation of
SQL) was built to explore automated testing. RAGS
is currently used by the Microsoft SQL Server
[MSS98] testing group. This paper describes RAGS
and some illustrative test results.

Figure 1 illustrates the test coverage problem.
Customers use the hexagon, bugs are in the oval, and
the test libraries cover the shaded eircle.

Input Domain

All possible SQL
statements and
database states

Used by
customers

Slutz, VLDB 1998

wsatt (>

Quer - >
Genera\t/or m TI D B

RS, = RS, = RS,?
#
?SQLite

Slutz, VLDB 1998

wsatt (=

2o, & @ TiDB —» v’

RS, = RS, = RS,?
#
?SQLite e

Slutz, VLDB 1998

wsatt (=

uer . | k
Gecrlmera\t/or m TI D B e x

RS, = RS, = RS,?
#
?SQLite e

Ghit et al., DBTest '20

© Copyright National University of Singapore.

| Useful and simple technique |

SparkFuzz: Searching Correctness Regressions in
Modern Query Engines

Bogdan Ghit Nicolas Poggi Josh Rosen
bogdan.ghit@databricks.com nicola: el icks.com josh: icks.com
Databricks Inc. Databricks Inc. Databricks Inc.
Reynold Xin Peter Boncz
rxin@databricks.com peter.boncz@cwinl
Databricks Inc. Centrum Wiskunde & Informatica
ABSTRACT

With more than 1200 contributors, Apache Spark is one of the
most actively developed open source projects. At this scale and
pace of development, mistakes are bound to happen. In this paper
we present SparkFuzz, a toolkit we developed at Databricks for
uncovering correctness errors in the Spark SQL engine. To guard
the system against correctness errors, SparkFuzz takes a fuzzing
approach to testing by generating random data and queries. Spark-
Fuzz executes the generated queries on a reference database system
such as PostgreSQL which is then used as a test oracle to verify
the results returned by Spark SQL. We explain the approach we
take to data and query generation and we analyze the coverage of
SparkFuzz. We show that SparkFuzz achieves its current maximum
coverage relatively fast by generating a small number of queries.
ACM Reference Format:

Bogdan Ghit, Nicolas Poggi, Josh Rosen, Reynold Xin, and Peter Boncz. 2020.
Spark Searching Correctnes: ions in Modern Query Engines.
In Workshop on Testing Database Systems (DBTest'20). June 19, 2020, Portland,
OR, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3395032.
3395327

1 INTRODUCTION

Early data analytics frameworks such as MapReduce enabled users
to simplify the exccution of their big data workloads by means of
a powerful, but low-level procedural programming interface. To
cope with this limitation, systems such as Hive (24], Impala [19],
and Spark SQL [13] expose relational interfaces to big data applica-
tions, thus p g richer ic optimizations. As a result,
the design of isms for improving of data
analytics systems is an active research area both in academia and
industry [15, 16, 25). With an increasingly complex architecture,
such systems are difficult to test with good coverage in practice.
Developers are at risk to incorporate bugs, which may not only
negatively impact the system performance, but may also alter the
correctness of the results. In this paper we present the design and

Aottt

Figure 1: The distribution of code ibutions in the
Apache Spark open source project in the trailing year.

of Spark . a toolkit for
SQL test cases which consist of random data and queries.

With powerful processing features and simple programming in-
terface catalyzing its wide adoption, Spark has recently become the
de facto framework for big data analytics [21]. Figure 1 shows that
the Spark open source code base changes at a pace of tens of com-
mits per day and so, mistakes are bound to happen. To guard the
framework against errors, developers add unit tests which often re-
sults in a significant engineering effort. Spark has roughly the same
amount of source and testing code. The effectiveness of such tests
is however relatively low because they are restricted to specific op-
erations on fixed inputs which cannot cover all possible code paths.

data analytics arc also prone to relatively
high variability when the input dataset changes [17). Therefore,
standard testing techniques fail to capture data-dependent runtime
interactions in these frameworks.

Catalyst, the Spark query optimizer, employs pattern-matching
to express composable rules in a Turing language, while
offering a general framework for transforming trees. Catalyst mod-
ifes the user queries through tree transformations which are called
rules. Such rules are grouped into multiple batches which are ex-
ccuted until the query plan reaches a fixed point - the tree stops
changing after applying the same set of rules. Combining the sup-
ported set of rules in different ways typically diversifies the gener-
ated code paths and uncover regressions that may remain hidden

otherwise. Testing all possible combinations of rules is however a
%) S S

Slutz, VLDB 1998

DBMS-specific “[...] proved to be extremely
SQL useful, but only for the small
set of common SQL”

Differences Between SQL Dialects

1. » Risk Everything (archive.org)

99 points by sutro 2 hours ago | hide | 17 comments

2. » An odd discovery on Spotify (robinsloan.com)
390 points by breathenow 6 hours ago | hide | 126 comments

3. 4 Dell XPS 13 Plus developer edition: Now available with Ubuntu 22.04 LTS (dell.com)

48 points by nixcraft 1 hour ago | hide | 40 comments

4. » Republishing a fork of the sanctioned Tornado Cash repositories (twitter.com/matthew_d_green)
256 points by Andrew_nenakhov 8 hours ago | hide | 197 comments

5. 4 Google refuses to reinstate account after man took medical images of son’s groin (theguardian.com)
224 points by sandebert 2 hours ago | hide | 108 comments

I 6. & Parsing SQL (tomassetti.me) I

50 points by teleforce 4 hours ago | hide | 14 comments

What are the limits of SQL? After a while you learn of a couple of issues:

* thereis not one SQL, but many variations of it. The SQLs implemented in SQLite,
MySQL, PostgreSQL, etc. are all a bit different

https://tomassetti.me/parsing-sql/

© Copyright National University of Singapore. All Rights Reserved.

Differential Testing

» “Obvious” approach for systems that implement the same
semantics

» Key challenge: how to generate valid test cases that are indeed
expected to produce the same result

» C compilers: avoid undefined behavior

Project idea: apply differential testing to a new domain
or test for a different requirement (e.g., performance)

© Copyright National University of Singapore. All Rights Reserved.

Metamorphic Testing

& WolframAlpha

sin(x) B

» Testing “untestable” systems
» no ground truth

-~ n e
GE| Jfa MATH INPUT EH EXTENDED KEYBOARD 33 % 34

» Generate a follow-up test cases .
» Black-box approach R

» Requires a metamorphic relation [AN s
» Prime example: sin (11 — X) = sin X \4,/ \/

https://www.wolframalpha.com/input?i=sin%28x%29

© Copyright National University of Singapore. All Rights Reserved.

Metamorphic Testing

Metamorphic Testing

l 0
Oracle
P for each

] | other
| I DI
|
| |
| |

Derived follow-up input

© Copyright National University of Singapore. All Rights Reserved.

Metamorphic Testing

while True:
arr = get_random_array()
if len(arr) >= 1:
sorted_arr = bubble_sort(arr)
random_elem = random.choice(sorted_arr)
arr.remove(random_elem)
sorted_smaller_arr = bubble_sort(arr)
sorted_arr.remove(random_elem)
assert sorted_arr == sorted_smaller_arr,
str(sorted_arr) + str(sorted smaller _arr)

Check whether the relative order of sorted
elements is maintained when an element is
removed from an input array

© Copyright National University of Singapore. All Rights Reserved.

Example: EMI
mutate

Input |

”

Output O

© Copyright National University of Singapore. All Rights Reserved. htt pS ://peo p I e . i nf. et h Z . C h/S U Z/e m i/i n d EX. ht m I

Xinyue et al. (DBTest’20)

Testing Query Execution Engines with Mutations

Xinyue Chen
chenxy20@cs.washington.edu
University of Washington

ABSTRACT

Query optimizer engine plays an important role in modern database
systems. However, due to the complex nature of query optimizers,
validating the correctness of a query execution engine is inherently
challenging. In particular, the high cost of testing query execution
engines often prevents developers from making fast iteration during
the development process, which can increase the development cycle
or lead to production-level bugs. To address this challenge, we
propose a tool, MuTaSQL, that can quickly discover correctness
bugs in SQL execution engines. MUTASQL generates test cases by
mutating a query Q over database D into a query Q' that should
evaluate to the same result as Q on D. MuTaSQL then checks the
execution results of Q' and Q on the tested engine. We evaluated
MuTAaSQL on previous SQLite versions with known bugs as well
as the newest SQLite release. The result shows that MUTASQL can
effectively reproduce 34 bugs in previous versions and discover a
new bug in the current SQLite release.

© Copyright National University of Singapore. All Rights Reserved.

Chenglong Wang
clwang(@cs.washington.edu
University of Washington

Alvin Cheung
akcheung@cs.berkeley.edu
University of California, Berkeley

In this paper, we describe MUTASQL, a new light-weight mu-
tation testing engine can both efficiently discover and effectively
report SQL engine bugs that can be used during development. Mo-
tivated by mutation testing in software engineering literature [2],
MuTAaSQL achieves the “best of both worlds” between hand-written
and randomly generated test cases by allowing developers to pro-
vide light-weight seed queries and optional rewrite rules. Based on
the provided seed queries and rules, MuTASQL will intelligently
generate test cases such that they are semantically equivalent to
the seeds, making it easy to validate the results returned by the
query engine under test.

Concretely, MUTASQL consists of two components: (1) a muta-
tion engine that changes queries iteratively starting from seed to
more complex ones in searching for engine bugs, and (2) a query
simplifier that simplifies and generalizes a reported query that trig-
gers bugs, with the goal to derive a minimal, human-readable query
for developers that can be used for debugging.

Xinyue et al. (DBTest’20)

if q(D) contains

Select c1,...
Select c1,... no duplicate tuples , From t
(Q= F;;O"' t , D) > Q' = Where p
Where p Group By c1,...

Manually-specified rules that, when applied,
guarantee that the result does not change

Intramorphic Testing

» Idea: rather than changing an input or test case, change the
program under test

» White-box testing approach

Intramorphic Testing

Intramorphic
transformation

P' = P[C/C]]

G

© Copyright National U

C'/Ci

Test oracles
for each other

G

P
C, C
Cn-1 Cn
v
0 K

niversity of Singapore. All Rights Reservi

A

ed.

Intramorphic Testing

while True:
arr = get _random_array()
sorted_arr = bubble sort(arr.copy())
reverse_sorted _arr = bubble sort reverse(arr.copy())
assert sorted _arr.reverse() == reverse_sorted arr,
str(sorted_arr) + ' ' + str(reverse sorted arr)

© Copyright National University of Singapore. All Rights Reserved.

Property-based Testing

» Idea: specify properties that hold for a function (or component)
» (Randomly) generate data to test whether these properties indeed hold

» Pioneered in QuickCheck
» Implemented in ~300 lines of code

Property-based Testing

def property_idempotent(l):
double rev _list = 1l.copy()
bubble sort(1l)
bubble sort(double rev_1list)
bubble sort(double rev_1list)
return 1 == double rev_list

© Copyright National University of Singapore. All Rights Reserved.

Property-based: Expected Errors

private SQLQueryAdapter generate() {
sb.append("INSERT INTO ");
DuckDBTable table = globalState.getSchema().getRandomTable(t -> !t.isView());
List<DuckDBColumn> columns = table.getRandomNonEmptyColumnSubset();
sb.append(table.getName());
sb.append("(");
sb.append(columns.stream().map(c -> c.getName()).collect(Collectors.joining(", ")));
sb.append(")");
sb.append(” VALUES ");

insertColumns(columns);

I DuckDBErrors.addInsertErrors(errors);I

return new SQLQueryAdapter(sb.toString(), errors);

© Copyright National University of Singapore. All Rights Reserved. https://github.com/sqlancer/sqlancer/blob/master/src/sqlancer/duckdb/gen/DuckDBInsertGenerator.java

Property-based: Expected Errors

public static void addInsertErrors(ExpectedErrors errors) {
errors.add("NOT NULL constraint failed");
errors.add("PRIMARY KEY or UNIQUE constraint violated");
errors.add("duplicate key value violates primary key or unique constraint");
errors.add("can't be cast because the value is out of range for the destination type");
errors.add("Could not convert string");
errors.add("timestamp field value out of range");
errors.add("Unimplemented type for cast");
errors.add("date/time field value out of range");
errors.add("CHECK constraint failed");
errors.add("Cannot explicitly insert values into rowid column"); // TODO: don't insert into rowid
errors.add(" Column with name rowid does not exist!"); // currently, there doesn't seem to way to determine if

// the table has a primary key

errors.add("Out of Range: Could not cast value");

) Some errors are always unexpected
(e.g., database corruptions)

© Copyright National University of Singapore. All Rights Reserved. https://github.com/sqlancer/sqlancer/blob/524942f693c0217f459b7565b42bc8515b4f7d92/src/sqlancer/duckdb/DuckDBErrors.java#L81

Automated Testing

» Automation of test case generation and the test oracle

Test Case E":,'ZI Test Oracle

Generational vs. Mutational

» Mutational: start with initial seeds that are mutated
» Generational: generate inputs/test cases from scratch

(Naive) Random Testing

» Random program generator for C

» Challenge: generate valid programs
free of undefined behavior

» Found hundreds of bugs

https://embed.cs.utah.edu/csmith

© Copyright National University of Singapore. All Rights Reserved.

- Csmith

Finding and Understanding Bugs in C Compilers

Xuejun Yang

Yang Chen

Eric Eide John Regehr

University of Utsh, School of Computing
{ jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract

Compilers should be comect. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is t advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-cade bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categaries and Subjeet Deseriptors D.2.5 [Saftware Engincer-
ing]: Testing and Deby twols; 2
Languages]: Language C C: D34
Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing.
random testing, random program generation

1. Introduction

The theary of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved eorrect
Nevertheless, the practical art of compiler construction imvolves a
morass of trade-0ffs between compilation speed, code quality. code
debuggability. compiler modularity, compiler retargetability. and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs
Miscompilations oficn happen because optimization safety
checks arc inadequate, static analyses are unsound. o transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to he checked were never written down in a precise
vay, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
suceeed. This paper reports our experience in using testing to make
C compilers beter.

1 it foo (veid) {

2 signed char x

3 unsigned char y = 255;
4 return x > y;

El

Figgure 1. We found & bug in the version of GCC that shipped with
Ubuntu Linex £04.1 for x86. At all optimization levels it compiles
this function to return 1: the correct result is 0. The Ubuntu compiler
was heavily patched: the base version of GCC did not have this bug

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates o C program; a test haress then compiles the program us-
ing scveral compilers, runs the cxecutables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantiall
advance the state of the art by generating random programs that
are expressive —containing complex code using many C language
features—while also csuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior. nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the 099 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: 1o
date, we have found and reported more than 325 bugs in mainstream
C compilers including GOC. LLVM, and commercial tools. Figure |
shows 3 represemative example. Every compiler that we have tested.
including several that are routinely used to compile safety-critical
embedded systems. has been crashed and also shown to silently
‘miscompile valid inputs. As measured by the respenses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reponed against GOC and LLVM have been
fixed. Twenty-five of our reported GOC bugs have been classified as
P1, the maximum, rclease-hlocking prionty for GOC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore arypical combinations of C
langusge features. Atypical code is nof unimportant code, how-
cver it is simply underrepresented in fixed compiler test suites
Developers who stray outside the well-tested paths that represent
a compiler's “comfort zone™—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—ean encounter bugs quite frequently.

https://dl.acm.org/doi/10.1145/1993316.1993532

(Naive) Random Testing: RAGS

3 SQL Statement Generation

RAGS generates SQL statements by walking a sto-
Ran d O m SQ L q u e ry g e n e rator chastic parse tree and printing it out. Consider the
SQL statement
SELECT name. salary + commission

FROM Employee
WHERE (salary > 10000) AND
(department = ‘sales’)
and the parse tree for the statement shown below in
Figure 5. Given the parse tree, you could imagine a

-]
o | [aparinent | >~«—v

Figure 5: Parse tree for Select statement.

program that would walk the tree and print out the
SQL text. RAGS is like that program except that it
builds the tree stochastically as it walks it.

© Copyright National University of Singapore. All Rights Reserved.

(Naive) Random Testing: SQLsmith

» Random SQL query generator inspired by Csmith
» Reads schema information (+ supported functions)
» Generator based on grammar

» Adopted by many/most database companies

s

https://github.com/ansel/sqlsmith

https://github.com/ansel/sqlsmith

Skeletal Program Enumeration (SPE)

» Challenge: Obtain test cases with diverse control- and data-
dependencies

» Idea: Extract a skeleton that can be parameterized

https://people.inf.ethz.ch/suz/emi/index.html

Skeletal Program Enumeration (SPE)

def bubble_sort(arr):
length = len(arr)
for 1 in range(length):
for j in range(©, length - i - 1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]

© Copyright National University of Singapore. All Rights Reserved. htt pS ://peo p I e . i nf- et h Z . C h/S U Z/e m i/i n d eX . ht m I

Skeletal Program Enumeration (SPE)

def bubble_sort(arr):
o = len(arr)
for o in range(length):
for o in range(®, length - i - 1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]

Variables: length, i, | : : id filli
ariables-1Engt, L1 1 SpE describes an algorithm to avoid filling holes

with variables that result in test cases with
redundant control- and data-dependencies

© Copyright National University of Singapore. All Rights Reserved. htt pS ://peo p | e . i nf. et h Z . C h/S U Z/e m i/i n d eX . ht m I

Automated Testing & Fuzzing

Automated Testing

Software engineering
community

Test own programs

Knowledge about the domain
& applications

Test oracles

Fuzzing
» Security community

» Test other programs
» Minimal assumptions
» Security vulnerabilities

(Black-box) Fuzzing

Bart Miller coined the term in 1988

U39p5jwo3jsasdf... SEGFAULT

(Black-box) Fuzzing

COMPUTER SCIENCES DEPARTMENT
UNIVERSITY OF WISCONSIN-MADISON

CS 736 Bart Miller
Fall 1988

Project List
(Brief Description Due: Wednesday, October 26)
(Midway Interview: Friday, November 18}
(Final Report Due: Thursday, December 15)

General Comments

The projects are intended to give you an opportunity to study a particular arca related to operating sys-
tems. Your project may require a test implementation, measurement study, simulation, literature search,
paper design, or some combination of these.

The project suggestions below are briefly stated. They are intended to guide you into particular areas
and you are expected to expand these suggestions into a full project descriptions. This gives you more free-
dom in selecting an area and more burden in defining your own project. There may be more issues listed
for a project than you can cover. If you have a topic of your own that is not listed below, you should come
and talk with me so we can work out a reasonable project description.

You will write a paper that reports on your project. This paper will structured as if you were going to
submit it to a conference. I will provide more details on the project report later in the semester.

You can work in teams of two people on the project and report.

Projects

(1) Operating System Utility Program Reliability — The Fuzz Generator: The goal of this project is to
evaluate the robustness of various UNIX utility programs, given an unpredictable input stream. This
project has two parts. First, you will build a fuzz generator. This is a program that will output a ran-
dom character stream. Second, you will take the fuzz generator and use it to attack as many UNIX
utilities as possible, with the goal of trying to break them. For the utilities that break, you will try to
determine what type of input cause the break.

The fuzz generator will generate an output stream of random characters. It will need several options
to give you flexibility to test different programs. Below is the start for a list of options for features
that fiz= will support. It 1s important when writing this program to use good C and UNIX style. and
good structure, as we hope to distribute this program to others.

-p only the printable ASCII characters

© Copyright National University of Singapore. All Rights Reserved. https://pageS.CS.WiSC.ed U/Nba rt/fUZZ/Cs736'PrOjeCtS'f1988. pdf

Implicit Test Oracles

» Crashes
» Timeouts
» Dynamic Analysis Tools (Sanitizers)

Grammar Based Fuzzing/Testing

» Idea: use a grammar as a specification

deallocatestmt

: DEALLOCATE name
DEALLOCATE PREPARE name
DEALLOCATE ALL

DEALLOCATE PREPARE ALL

insertstmt

: opt with clause INSERT INTO insert target insert rest opt on_conflict returning clause

insert target
: qualified_name (AS colid)?

insert_rest

1 selectstmt

OVERRIDIMNG override kind VALUE P selectstmt

OPEN_PAREN insert_column_list CLOSE_PAREN (OVERRIDING override_kind VALUE_P)? selectstmt
DEFAULT VALUES

© Copyright National University of Singapore. All Rights Reserved. https://github.com/antlr/grammars-v4/blob/master/sql/postgresql/PostgreSQLParser.g4

Grey-box Fuzzing

American Fuzzy Lop (AFL)
Lop, not loop
Successor: AFL++

Instruments program to collect coverage
Grey-box fuzzing

Puts more energy into further mutating inputs that cover new
code paths

https://github.com/AFLplusplus/AFLplusplus

White-box Fuzzing

» Idea: utilize detailed
knowledge about
the program

» Symbolically
execute an input

» Gather constraints
along the way

» Negate constraints
systematically using
a constraint solver

© Copyright National University of Singapore. All Rights Reserved.

UEU SAGE: Whitebox Fuzzing
for Security Testing

SAGE has had a remarkable impact at Microsoft.

Patrice Godefroid, Michael Y. Levin, David Molnar, Microsoft

Most ACM Queue readers might think of “program verification research” as mostly theoretical with
little impact on the world at large. Think again. If you are reading these lines on a PC running some
form of Windows (like 93-plus percent of PC users—that is, more than a billion people), then you
have been affected by this line of work—without knowing it, which is precisely the way we want it
to be.

THE HIGH COST OF SECURITY BUGS

Every second Tuesday of every month, also known as “Patch Tuesday,” Microsoft releases a list of se-
curity bulletins and associated security patches to be deployed on hundreds of millions of machines
worldwide. Each security bulletin costs Microsoft and its users millions of dollars. If a monthly
security update costs you $0.001 (one tenth of one cent) in just electricity or loss of productivity,
then this number multiplied by a billion people is $1 million. Of course, if malware were spreading
on your machine, possibly leaking some of your private data, then that might cost you much more
than $0.001. This is why we strongly encourage you to apply those pesky security updates.

Many security vulnerabilities are a result of programming errors in code for parsing files and
packets that are transmitted over the Internet. For example, Microsoft Windows includes parsers for
hundreds of file formats.

If you are reading this article on a computer, then the picture shown in figure 1 is displayed on
your screen after a jpg parser (typically part of your operating system) has read the image data,
decoded it, created new data structures with the decoded data, and passed those to the graphics

Additional Resources

The Fuzzing Book

Tools and Techniques for Generating Software Tests

by Andreas Zeller, Rahul Gopinath, Marcel B6hme, Gordon Fraser, and Christian Holler

About this Book

Welcome to "The Fuzzing Book"! Software has bugs, and catching bugs can involve lots of effort. This book addresses this problem by automating
software testing, specifically by generating tests automatically. Recent years have seen the development of novel techniques that lead to dramatic
improvements in test generation and software testing. They now are mature enough to be assembled in a book - even with executable code.

from bookutils import YouTubeVideo
YouTubeVideo("w4u5gCgPlmg")

Generating So re Tests

Breaking Software for Fun an

Ansehen auf (8 YouTube

https://www.fuzzingbook.org/

© Copyright National University of Singapore. All Rights Reserved.

Small Scope Hypothesis

» Most bugs can be found with small/simple inputs

© Copyright National University of Singapore. All Rights Reserved.

Evaluating the “Small Scope Hypothesis™

Alexandr Andoni Dumitru Daniliuc

Sarfraz Khurshid Darko Marinov

MIT Laboratory for Computer Science
200 Technology Square

{andoni, dumi, khur

Abstract

The “small scope hypothesis™ argues that a high pro-
portion of bugs can be found by testing the program for all
test inputs within some small scope. In object-oriented pro-
grams, a test input is constructed from objects of different
classes; a test input is within a scope of s if at most s ob-
Jects of any given class appear in . If the hypothesis holds,
it follows that it is more effective to do systematic testing
within a small scope than to generate fewer test inputs of a
larger scope.

This paper evaluates the hypothesis for several imple-
mentations of data structures, including some from the Java
Collections Framework. We measure how statement cov-
erage, branch coverage, and rate of mutant killing vary
with scope. For systematic input generation and correct-
ness checking of Java programs, we use the Korat frame-
work. This paper also presents the Ferastrau framework
that we have developed for mutation testing of Java pro-
grams. The experimental results show that exhaustive test-
ing within small scopes can achieve complete coverage and
kill most of the mutants, even for intricate methods that ma-
nipulate complex data structures. The results also show that
Korat can be used effectively to generate inputs and check
correctness for these scopes.

Cambridge, MA 02139

vl

language [12] to develop software models and exhaustively
check them for small scopes with the Alloy Analyzer. These
case studies showed that the hypothesis holds for those soft-
ware models, but they did not consider the actual implemen-
tations.

This paper evaluates the “small scope hypothesis™ for
several benchmark programs, including some data struc-
ture implementations from the Java Collections Frame-
work [29]. the hypothesis requires d

the scope up to which each program should be checked, i.c.,
the sufficient scope that gives significant confidence that the
program has no bugs. We use code coverage and mutation
testing criteria to determine the sufficient scope.

Code coverage is a common criterion for assessing the
quality of a set of test inputs [5]. Measuring code coverage
involves executing the program on each input and record-
ing parts of the program (e.g., statements, branches, paths)
that get executed. Statement (branch) coverage is then the
ratio of the number of executed statements (branches) to the
number of total statements (branches) in the program; com-
plete coverage is the ratio of 100%.

Mutation testing is another criterion for assessing the
quality of a set of test inputs [11,26]. Mutation testing pro-
ceeds in two steps. In the first step, several mutants are gen-
erated from the original (correct) program, by performing
one or more syntactic modifications. These modifications
are specified by mutation operators, e¢.g., replacing a vari-

Test Case Reduction

Problem: Automatically
generated test cases are
typically unnecessarily
large

ldea: reduce them

© Copyright National University of Singapore. All Rights Reserved.

PRAGMA cache_size = 50000;

PRAGMA temp_store=MEMORY;

PRAGMA synchronous=off;

PRAGMA encoding = 'UTF-16be’;

CREATE TABLE IF NOT EXISTS tO (cO TEXT, c1 INTEGER);

INSERT OR IGNORE INTO t0(c1) VALUES (320), (0X2a1);

PRAGMA incremental_vacuum;

UPDATE OR ABORT t0 SET c1 = '-9223372036854775808' WHERE t0.cO COLLATE BINARY;
INSERT OR IGNORE INTO t0 VALUES (0x58, 0x2c4), (852, 0X3d4), (384, 0x199), (718, 847);
BEGIN TRANSACTION;

PRAGMA legacy_file_format = true;

UPDATE OR REPLACE t0 SET c0 = 0.03283042105908274, c0 = x", c1 = OXffffffffab13f8ae;
UPDATE t0 SET (c0)=(-1881505887) WHERE ((t0.c1 COLLATE NOCASE)IS NOT(((t0.cO) NOT BETWEEN (t0.c1
PRAGMA auto_vacuum;

UPDATE OR IGNORE t0 SET c0 = 'zIVRGBI ZvX?tid@ Bl', c1=-1.424754514E9, c0 = 0.3406202076523681;
UPDATE OR ABORT t0 SET c1 = 0.6840655763518566 WHERE (-45384822 IN ());

UPDATE OR IGNORE t0 SET c0 = 'Xf', c0 = OXffffffff8fda7fal WHERE (~ ((NOT (t0.c0))));
BEGIN TRANSACTION;

PRAGMA temp.auto_vacuum;

BEGIN TRANSACTION;

ANALYZE;

UPDATE OR REPLACE t0 SET (c0)=(0.06651996418720685);

REINDEX;

REINDEX BINARY;

REINDEX;

COMMIT TRANSACTION;

PRAGMA main.mmap_size;

CREATE INDEX IF NOT EXISTS i48 ON tO((CASE c1 WHEN 0.36391525195019603 THEN cO WHEN cO THEN
WHEN cO THEN c1 ELSE 0.19854138768397123 END IN (((c1)&(c0)))) ASC,CAST(c1 COLLATE RTRIM AS BLC
DESC);

COMMIT;

ANALYZE;

ROLLBACK TRANSACTION;

COMMIT;

PRAGMA cache_size;

ANALYZE;

BEGIN DEFERRED TRANSACTION;

PRAGMA journal_mode = WAL;

UPDATE OR REPLACE t0 SET 0 = 'j(I&ic

R BR>Hil8 | /FZ]>!", c0 = 0.517704345533682, c0 = NULL;

PRAGMA busy_timeout;

COMMIT;

COMMIT TRANSACTION;

PRAGMA main.soft_heap_limit;

PRAGMA temp.threads = 5428778230116844349;

PRAGMA temp.reverse_unordered_selects = false;

PRAGMA main.journal_mode;

COMMIT TRANSACTION:

Test Case Reduction

|:'|:|':| Property

Test Case Check

Test Case Reduction

Test Case

b

Property
Check

)

|

Reduced Test
Case

Derive

Reduction Tools

extern int printf (const char *, ...);
static char (safe_1) (char si)

#!/bin/bash

grep goto small.c >/dev/null 2>&1

goto

{
return (si == (-128)) ? ((si)) : -si; Interestingness test
}
static char (safe_2) (char sil1, char si2) > C-Reduce)
{ Original test case
Reduced test case
return

(((si1>0) && (si2 > 0) && (si1 > ((127) - si2)))
|| ((sil <0)&& (si2 <0)
&& (sil < ((-128) - si2)))) ? ((si1)) : (sil +
si2);
}

© Copyright National University of Singapore. All Rights Reserved.

Reduction Tools

Yesterday, My Program Worked.
Today, It Does Not. Why?

Delta Debugging Andrcss Zele

Universitiit Passau
Lehrstuhl fiir Software-Systeme

P e rS e S InnstraBe :il?::g&:: is:,iug; Germany
SQL-Reduce

Abstract, Imagine some program and a number of changes. If none of these
changes is applied (“yesterday™), the program works. If all changes are applied
(“today™), the program does not work. Which change is responsible for the fail-
ure? We present an efficient algorithm that determines the minimal set of failure-
inducing changes. Our delta debugging prototype tracked down a single failure-
inducing change from 178,000 changed GDB lines within a few hours.

1 A True Story

The GDB people have done it again. The new release 4.17 of the GNU debugger [6]
brings several new features, languages, and platforms, but for some reason, it no longer
integrates properly with my graphical front-end DDD [10]: the arguments specified
within DDD are not passed to the debugged program, Something has changed within
GDB such that it no longer works for me. Something? Between the 4.16 and 4.17 re-
leases, no less than 178,000 lines have changed. How can [isolate the change that
caused the failure and make GDB work again?

© Copyright National University of Singapore. All Rights Reserved. https//d | .acm Org/dol/lo 1 145/3187743 18946

Test Case Deduplication

» Problem: testing tools might repeatedly generate bug-inducing
test cases for the same underlying bugs

» Idea: Assign test cases that trigger the same bug to different
buckets

» AFL deduplicates bugs based on the stack trace

Test Case Deduplication

» Problem: testing tools might repeatedly generate bug-inducing
test cases for the same underlying bugs

» Idea: Assign test cases that trigger the same bug to different
buckets

» AFL deduplicates bugs based on the stack trace

Related Topics

»|Static Analysis
»\Qynamic AnalsLisl

» Program Repair

» Runtime Verification

» Symbolic Execution

» Abstract Interpretation
» Model Checking

» Program Synthesis

» Compilation & Optimization
> ...

Static vs. Dynamic Analysis

Static Analysis Dynamic Analysis
Examines the code » Analyzes the program while it
Considers all possible 5 b,
executions (or none) » Typically considers a single
execution

Often tension between
{lellaleRr-UN IV e fSX-1ale M=Tolo]ails[o M » Typically no false alarms -
only true bugs every bug reported indicates
a real bug

Soundness and Completeness

What Does It Mean for a Program Analysis to Be Sound?

by Ilya Sergey on Aug 7, 2019 | Tags: abstract interpretation, concurrency, dynamic analysis, soundness, static analysis, testing

© Copyright National University of Singapore. All Rights Reserved.) i X
https://blog.sigplan.org/2019/08/07/what-does-it-mean-for-a-program-analysis-to-be-sound/

Additional Resources

The Debugging Book

Tools and Technigues for Automated Software Debugging
by Andreas Zeller

About this Book

Welcome to "The Debugging Book"! Software has bugs, and finding bugs can involve lots of effort. This book addresses this problem by
automating software debugging, specifically by locating errors and their causes automatically. Recent years have seen the development of novel
techniques that lead to dramatic improvements in automated software debugging. They now are mature enough to be assembled in a book -
even with executable code.

from bookutils import YouTubeVideo
YouTubeVideo("-n0OxI6Ev_I4")

The Debugginwook

debuggingboskorg
Ansehen auf (8 YouTube ™ solid

https://www.debuggingbook.org/

© Copyright National University of Singapore. All Rights Reserved.

Presentations: Differential Testing

» Data-Oriented Differential Testing of Object-Relational Mapping
Systems

» APOLLO: automatic detection and diagnosis of performance
regressions in database systems

Test Case E":,'ZI Test Oracle

Presentations: Metamorphic Testing

» Metamorphic testing of Datalog engines

» Automatic Detection of Performance Bugs in Database
Systems using Equivalent Queries

Test Case E":,'ZI Test Oracle

Presentations: Fuzzing

» SQUIRREL.: Testing Database Management Systems with
Language Validity and Coverage Feedback

» BigFuzz: Efficient Fuzz Testing for Data Analytics Using
Framework Abstraction

Test Case E":,'ZI Test Oracle

Presentations: Fuzzing

» Search-based test data generation for SQL queries

» Data generation for testing and grading SQL queries
» Mutation testing technique

Test Case E":,'ZI Test Oracle

Presentations: Testing and Synthesis

» Torturing Databases for Fun and Profit
» Property-based testing
» Systems level approach

» Synthesizing Analytical SQL Queries from Computation
Demonstration

» Program synthesis

Presentations: Analysis and Debugging

» CheckCell: data debugging for spreadsheets

» SQLCheck: Automated Detection and Diagnosis of SQL Anti-
Patterns

Presentations: Performance Optimization

» View-Centric Performance Optimization for Database-Backed
Web Applications

» AIDA - Abstraction for Advanced In-Database Analytics

Summary

» Manual/unit testing, code coverage, mutation testing

» Test oracles: Differential testing, metamorphic testing, property-
based testing, intramorphic testing

» Test case generation: generational vs. mutational, automated
testing vs fuzzing

» Test case reduction and deduplication

