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Last Lecture

Logistics

Data-centric systems
What are they?

Why are they important?

Why is it difficult to maintain their correctness?

By what bugs can they be affected?
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What's a Data-Centric System?

Data is a central asset
Intensional definition

Are AI applications included or not?
If yes, is any application that interacts with an environment data-
centric?

Let's settle on an extensional definition
Included: Database systems, data manipulation frameworks, data 
processing engines

Arguable: AI applications 
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Grading for Presentation

Presentation grading
Understands the paper 30%

Own examples, Q/A, critical reflections, …

Structure and content of presentation 30%
thread, well-motivated, figures, …

Presentation style 20%
Appropriate speed, speaking freely, …

Timing (25 - 30 minutes) 20%
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Additional Notes About Presentations

Read the papers thoroughly and critically
Sometimes requires reading parts of other papers

I can offer to give feedback for the presentation
Coordinate with me when you want to send it to me
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Grading for Project

Initial report (30%)
Answered main questions

Structure and content

Project artifact (20%)
Quality

Groups of two: contribution

Project report (30%)
Structure and Content

(Short) project presentation (20%)

Bonus points for difficult projects, interesting ideas, …
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This Lecture

A whirlwind tour on testing-related approaches
Ideas rather than details

Motivation for the upcoming paper presentations

Test oracles for database systems
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This Lecture

A whirlwind tour on testing-related approaches
Ideas rather than details

Motivation for the upcoming paper presentations

Test oracles for database systems

Multiple students dropped the class, 
allowing for a less tight schedule
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Presentations

Presentations will start one week later (on 
06/09/22) and subsequent presentations 

will be shifted and combined
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(Manual) Testing

Testing: Executing the program with the goal to find errors

Dijkstra: “program testing can be used very effectively to show 
the presence of bugs but never to show their absence”

Functional vs. non-functional requirements (e.g., performance)
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Unit Testing

Test a “unit” in isolation

Often synonymous with regression tests
Check that previously-working functionality still works
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Unit Testing

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[i]
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Unit Testing

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[i]
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Unit Testing

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[i]

arr = [3, 1, 2]
bubble_sort(arr)
assert arr == [1, 2, 3]  # AssertionError, actual: [1, 2, 1]
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Unit Testing: MySQL

--source include/have_debug.inc
--source include/have_innodb_max_16k.inc

set global innodb_compression_level = 0;
create table t1 (f1 int primary key, f2 longblob)

row_format=compressed, engine=innodb;
set debug='+d,innodb_zlob_print';
insert into t1 values (1, repeat('+', 1048576));
set debug='-d,innodb_zlob_print';
select f1, right(f2, 40) from t1;
drop table t1;
set global innodb_compression_level = default;

https://github.com/mysql/mysql-server/blob/8.0/mysql-
test/suite/innodb/t/zlob_print.test

https://github.com/mysql/mysql-server/blob/8.0/mysql-
test/suite/innodb/r/zlob_print.result

set global innodb_compression_level = 0;
create table t1 (f1 int primary key, f2 longblob)
row_format=compressed, engine=innodb;
set debug='+d,innodb_zlob_print';
insert into t1 values (1, repeat('+', 1048576));
set debug='-d,innodb_zlob_print';
select f1, right(f2, 40) from t1;
f1 right(f2, 40)
1

+++++++++++++++++++++++++++++++++++++++
+
drop table t1;
set global innodb_compression_level = default;

zlob_print.resultzlob_print.test
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(Manual) Testing

How can we assess the quality of tests?
Number and importance of found bugs

Code coverage

Mutation testing
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(Manual) Testing

How can we assess the quality of tests?
Number and importance of found bugs

Code coverage

Mutation testing
Defining and evaluating 

metric(s) is a potential project
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(Manual) Testing

How can we assess the quality of tests?
Number and importance of found bugs

Code coverage

Mutation testing
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Code Coverage

Idea: check which parts of the code 
are covered by tests

Goals
Measure the quality of a test suite

Systematically test code

Various granularities

https://dl.acm.org/doi/pdf/10.1145/366246.366248
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Code Coverage: Common Metrics

Function coverage = 
# 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
x 100

Statement coverage = 
# 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

# 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠
x 100

Branch coverage = 
# 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

# 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠
x 100
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Code Coverage: Function Coverage

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):

if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

Goal: reach 100% function coverage
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Code Coverage: Function Coverage

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):

if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

bubble_sort([])
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Code Coverage: Statement Coverage

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):

if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

bubble_sort([2, 1])
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Code Coverage: Branch Coverage

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):

if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[i]

bubble_sort([3, 2, 1])
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Code Coverage

Low coverage means that the code is 
not tested

100% coverage does not imply that the 
program is fully tested

Often reported in the evaluation of 
testing approaches

SQL-specific coverage criteria have 
been proposed

https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.424
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Black-, Grey-, and White-box Approaches

No standardized definition

Black-box: no internal information
For example, based on a function’s documentation

White-box: internal information
For example, based on a function’s implementation

Grey-box: some internal information (e.g., coverage)
Relevant for Fuzzing
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(Manual) Testing

How can we assess the quality of tests?
Number and importance of found bugs

Code coverage

Mutation testing
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Mutation Testing

Goal
Evaluate the quality of existing tests

Derive new tests

Idea: mutate code in the program, assuming that a test case 
“kills” the mutant

Percentage of mutants killed → quality of the test suite

White-box testing technique
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Unit Testing

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[j]

Step 1: create mutants

i

<
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Unit Testing

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[i]

Step 2: run test suite for 
every mutant: mutants is 

killed if test cases fails
run_tests()
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Unit Testing

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[i]

Step 3: Compute a mutation 
score based on the 

percentage of killed mutants
Mutation score = 

# 𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠

#𝑚𝑢𝑡𝑎𝑛𝑡𝑠
x 100



© Copyright National University of Singapore. All Rights Reserved. 

Automated Testing & Fuzzing

Goal: automatically generate tests or inputs to find bugs

Two related perspectives
Automated testing

Fuzzing

https://fuzzingworkshop.github.io/papers/Zeller-keynote-FUZZING-22.pdf
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Automated Testing & Fuzzing

https://fuzzingworkshop.github.io/papers/Zeller-keynote-FUZZING-22.pdf
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Automated Testing & Fuzzing

Automated Testing

Software engineering 
community

Test own programs

Knowledge about the domain 
& applications

Test oracles

Fuzzing

Security community

Test other programs

Minimal assumptions

Security vulnerabilities



© Copyright National University of Singapore. All Rights Reserved. 

Automated Testing & Fuzzing

Automated Testing

Software engineering 
community

Test own programs

Knowledge about the domain 
& applications
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Security vulnerabilities



© Copyright National University of Singapore. All Rights Reserved. 

Automated Testing

Automation of test case generation and the test oracle

Test Case Test Oracle
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Automated Testing

Automation of test case generation and the test oracle

Test Case Test Oracle
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Test Oracle
Incorrect result!

“a test oracle (or just oracle) is a mechanism for 
determining whether a test has passed or failed”

https://en.wikipedia.org/wiki/Test_oracle
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Test Oracle

(Executable) program specification unavailable

Complete vs partial specification
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Differential Testing

Systems compared
Different implementations 
(e.g., JVMs)

Versions (e.g., an old and 
new version)

Configurations (e.g., –O0 
vs –O3)

Goals: correctness, 
performance, … Black-box or white-box 

technique?
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Differential Testing

sorting_algorithms = [bubble_sort, merge_sort, insertion_sort]
while True:

arr = get_random_array() # e.g., [3, 1, 2]
sorted_arrays = [alg(arr) for alg in sorting_algorithms]
all_same = all(sorted_arr == sorted_arrays[0] for sorted_arr in

sorted_arrays) 
assert all_same, sorted_arrays
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Slutz, VLDB 1998
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Slutz, VLDB 1998

Query 
Generator

RS1

RS2

RS3

RS1 = RS2 = RS3?
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Slutz, VLDB 1998

Query 
Generator

RS1 = RS2 = RS3?

RS1

RS2

RS3

✓=
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Slutz, VLDB 1998

Query 
Generator

RS1 = RS2 = RS3?

RS1

RS2

RS3


≠
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Ghit et al., DBTest ’20

Useful and simple technique
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Slutz, VLDB 1998

DBMS-specific 
SQL

Commo
n SQL 
Core

“[…] proved to be extremely 
useful, but only for the small 

set of common SQL”
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Differences Between SQL Dialects

https://tomassetti.me/parsing-sql/



© Copyright National University of Singapore. All Rights Reserved. 

Differential Testing

“Obvious” approach for systems that implement the same 
semantics

Key challenge: how to generate valid test cases that are indeed 
expected to produce the same result

C compilers: avoid undefined behavior

Project idea: apply differential testing to a new domain 
or test for a different requirement (e.g., performance)
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Metamorphic Testing

Testing “untestable” systems 
no ground truth

Generate a follow-up test cases

Black-box approach

Requires a metamorphic relation
Prime example: sin (π − x) = sin x

https://www.wolframalpha.com/input?i=sin%28x%29
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Metamorphic Testing
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Metamorphic Testing

while True:
arr = get_random_array()
if len(arr) >= 1:

sorted_arr = bubble_sort(arr)
random_elem = random.choice(sorted_arr)
arr.remove(random_elem)
sorted_smaller_arr = bubble_sort(arr)
sorted_arr.remove(random_elem)
assert sorted_arr == sorted_smaller_arr, 

str(sorted_arr) + str(sorted_smaller_arr)

Check whether the relative order of sorted 
elements is maintained when an element is 

removed from an input array
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Example: EMI

https://people.inf.ethz.ch/suz/emi/index.html
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Xinyue et al. (DBTest’20)
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Xinyue et al. (DBTest’20)

Manually-specified rules that, when applied, 
guarantee that the result does not change
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Intramorphic Testing

Idea: rather than changing an input or test case, change the 
program under test

White-box testing approach
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Intramorphic Testing
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Intramorphic Testing

while True:
arr = get_random_array()
sorted_arr = bubble_sort(arr.copy())
reverse_sorted_arr = bubble_sort_reverse(arr.copy())
assert sorted_arr.reverse() == reverse_sorted_arr, 

str(sorted_arr) + ' ' + str(reverse_sorted_arr)



© Copyright National University of Singapore. All Rights Reserved. 

Property-based Testing

Idea: specify properties that hold for a function (or component)
(Randomly) generate data to test whether these properties indeed hold

Pioneered in QuickCheck
Implemented in ~300 lines of code
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Property-based Testing

def property_idempotent(l):
double_rev_list = l.copy()
bubble_sort(l)
bubble_sort(double_rev_list)
bubble_sort(double_rev_list)
return l == double_rev_list
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Property-based: Expected Errors

https://github.com/sqlancer/sqlancer/blob/master/src/sqlancer/duckdb/gen/DuckDBInsertGenerator.java
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Property-based: Expected Errors

https://github.com/sqlancer/sqlancer/blob/524942f693c0217f459b7565b42bc8515b4f7d92/src/sqlancer/duckdb/DuckDBErrors.java#L81

Some errors are always unexpected 
(e.g., database corruptions)
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Automated Testing

Automation of test case generation and the test oracle

Test Case Test Oracle
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Generational vs. Mutational

Mutational: start with initial seeds that are mutated

Generational: generate inputs/test cases from scratch
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(Naïve) Random Testing: Csmith

Random program generator for C

Challenge: generate valid programs
free of undefined behavior

Found hundreds of bugs

https://dl.acm.org/doi/10.1145/1993316.1993532

https://embed.cs.utah.edu/csmith/
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(Naïve) Random Testing: RAGS

Random SQL query generator
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(Naïve) Random Testing: SQLsmith

https://github.com/anse1/sqlsmith

Random SQL query generator inspired by Csmith

Reads schema information (+ supported functions)

Generator based on grammar

Adopted by many/most database companies

https://github.com/anse1/sqlsmith
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Skeletal Program Enumeration (SPE)

Challenge: Obtain test cases with diverse control- and data-
dependencies

Idea: Extract a skeleton that can be parameterized

https://people.inf.ethz.ch/suz/emi/index.html
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Skeletal Program Enumeration (SPE)

def bubble_sort(arr):
length = len(arr)
for i in range(length):
for j in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[j]

https://people.inf.ethz.ch/suz/emi/index.html
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Skeletal Program Enumeration (SPE)

def bubble_sort(arr):
□ = len(arr)
for □ in range(length):
for □ in range(0, length - i - 1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[j]

Variables: length, i, j
SPE describes an algorithm to avoid filling holes 

with variables that result in test cases with 
redundant control- and data-dependencies

https://people.inf.ethz.ch/suz/emi/index.html
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Automated Testing & Fuzzing

Automated Testing

Software engineering 
community

Test own programs

Knowledge about the domain 
& applications

Test oracles

Fuzzing

Security community

Test other programs

Minimal assumptions

Security vulnerabilities
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(Black-box) Fuzzing

Bart Miller coined the term in 1988

ProgramU39p5jwo3jsasdf… SEGFAULT
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(Black-box) Fuzzing

https://pages.cs.wisc.edu/~bart/fuzz/CS736-Projects-f1988.pdf
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Implicit Test Oracles

Crashes

Timeouts

Dynamic Analysis Tools (Sanitizers)
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Grammar Based Fuzzing/Testing

Idea: use a grammar as a specification

https://github.com/antlr/grammars-v4/blob/master/sql/postgresql/PostgreSQLParser.g4
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Grey-box Fuzzing

American Fuzzy Lop (AFL)
Lop, not loop

Successor: AFL++

Instruments program to collect coverage
Grey-box fuzzing

Puts more energy into further mutating inputs that cover new 
code paths

https://github.com/AFLplusplus/AFLplusplus
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White-box Fuzzing

Idea: utilize detailed 
knowledge about 
the program

Symbolically 
execute an input

Gather constraints 
along the way

Negate constraints 
systematically using 
a constraint solver
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Additional Resources

https://www.fuzzingbook.org/
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Small Scope Hypothesis

Most bugs can be found with small/simple inputs
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Test Case Reduction

Problem: Automatically 
generated test cases are 
typically unnecessarily 
large

Idea: reduce them

PRAGMA cache_size = 50000;
PRAGMA temp_store=MEMORY;
PRAGMA synchronous=off;
PRAGMA encoding = 'UTF-16be';
CREATE TABLE IF NOT EXISTS t0 (c0 TEXT , c1 INTEGER );
INSERT OR IGNORE INTO t0(c1) VALUES (320), (0X2a1);
PRAGMA incremental_vacuum;
UPDATE OR ABORT t0 SET c1 = '-9223372036854775808' WHERE t0.c0 COLLATE BINARY;
INSERT OR IGNORE INTO t0 VALUES (0x58, 0x2c4), (852, 0X3d4), (384, 0x199), (718, 847);
BEGIN  TRANSACTION;
PRAGMA legacy_file_format = true;
UPDATE OR REPLACE t0 SET c0 = 0.03283042105908274, c0 = x'', c1 = 0Xffffffffab13f8ae;
UPDATE t0 SET (c0)=(-1881505887) WHERE ((t0.c1 COLLATE NOCASE)IS NOT(((t0.c0) NOT BETWEEN (t0.c1) AND (t0.c0))));
PRAGMA auto_vacuum;
UPDATE OR IGNORE t0 SET c0 = 'z!vRGBl 2vX?öd☹딦', c1 = -1.424754514E9, c0 = 0.3406202076523681;
UPDATE OR ABORT t0 SET c1 = 0.6840655763518566 WHERE (-45384822 IN ());
UPDATE OR IGNORE t0 SET c0 = 'Xf', c0 = 0Xffffffff8fda7fa1 WHERE (~ ((NOT (t0.c0))));
BEGIN  TRANSACTION;
PRAGMA temp.auto_vacuum;
BEGIN  TRANSACTION;
ANALYZE;
UPDATE OR REPLACE t0 SET (c0)=(0.06651996418720685);
REINDEX;
REINDEX BINARY;
REINDEX;
COMMIT TRANSACTION;
PRAGMA main.mmap_size;
CREATE INDEX IF NOT EXISTS i48 ON t0((CASE c1  WHEN 0.36391525195019603 THEN c0 WHEN c0 THEN c0 WHEN 'W*' THEN c0 
WHEN c0 THEN c1 ELSE 0.19854138768397123 END IN (((c1)&(c0)))) ASC,CAST(c1 COLLATE RTRIM AS BLOB) COLLATE BINARY 
DESC);
COMMIT;
ANALYZE;
ROLLBACK TRANSACTION;
COMMIT;
PRAGMA cache_size;
ANALYZE;
BEGIN DEFERRED TRANSACTION;
PRAGMA journal_mode = WAL;
UPDATE OR REPLACE t0 SET c0 = 'j(l恸c
R 寐>H䟉|/FZ]>!', c0 = 0.517704345533682, c0 = NULL;
PRAGMA busy_timeout;
COMMIT;
COMMIT TRANSACTION;
PRAGMA main.soft_heap_limit;
PRAGMA temp.threads = 5428778230116844349;
PRAGMA temp.reverse_unordered_selects = false;
PRAGMA main.journal_mode;
COMMIT TRANSACTION;
CREATE INDEX i88 ON t0(x'',((((DATE(c1, c1, c1, c1))OR(CAST(c0 AS REAL))))AND(((c1) NOT NULL)))) WHERE NULL;
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Test Case Reduction

Test Case
Property 

Check
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Test Case Reduction

Derive

Test Case
Property 

Check

Reduced Test 
Case
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Reduction Tools

C-Reduce

extern int printf (const char *, ...);
static char (safe_1) (char si)
{

return (si == (-128)) ? ((si)) : -si;
}

static char (safe_2) (char si1, char si2)
{

return
(((si1 > 0) && (si2 > 0) && (si1 > ((127) - si2)))
|| ((si1 < 0) && (si2 < 0)

&& (si1 < ((-128) - si2)))) ? ((si1)) : (si1 + 
si2);
}
... 

#!/bin/bash
grep goto small.c >/dev/null 2>&1

goto

Interestingness test

Reduced test case

Original test case
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Reduction Tools 

Delta Debugging

Perses

SQL-Reduce

…

https://dl.acm.org/doi/10.1145/318774.318946
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Test Case Deduplication

Problem: testing tools might repeatedly generate bug-inducing 
test cases for the same underlying bugs

Idea: Assign test cases that trigger the same bug to different 
buckets

AFL deduplicates bugs based on the stack trace
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Test Case Deduplication

Problem: testing tools might repeatedly generate bug-inducing 
test cases for the same underlying bugs

Idea: Assign test cases that trigger the same bug to different 
buckets

AFL deduplicates bugs based on the stack trace
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Related Topics

Static Analysis

Dynamic Analysis

Program Repair

Runtime Verification

Symbolic Execution

Abstract Interpretation

Model Checking

Program Synthesis

Compilation & Optimization

…
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Static vs. Dynamic Analysis

Static Analysis

Examines the code

Considers all possible 
executions (or none)

Often tension between 
finding all bugs and reporting 
only true bugs

Dynamic Analysis

Analyzes the program while it 
is running

Typically considers a single 
execution

Typically no false alarms →
every bug reported indicates 
a real bug
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Soundness and Completeness

https://blog.sigplan.org/2019/08/07/what-does-it-mean-for-a-program-analysis-to-be-sound/
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Additional Resources

https://www.debuggingbook.org/
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Presentations: Differential Testing

Data-Oriented Differential Testing of Object-Relational Mapping 
Systems

APOLLO: automatic detection and diagnosis of performance 
regressions in database systems

Test Case Test Oracle
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Presentations: Metamorphic Testing

Metamorphic testing of Datalog engines

Automatic Detection of Performance Bugs in Database 
Systems using Equivalent Queries

Test Case Test Oracle
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Presentations: Fuzzing

SQUIRREL: Testing Database Management Systems with 
Language Validity and Coverage Feedback

BigFuzz: Efficient Fuzz Testing for Data Analytics Using 
Framework Abstraction

Test Case Test Oracle
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Presentations: Fuzzing

Search-based test data generation for SQL queries

Data generation for testing and grading SQL queries
Mutation testing technique

Test Case Test Oracle
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Presentations: Testing and Synthesis

Torturing Databases for Fun and Profit
Property-based testing

Systems level approach

Synthesizing Analytical SQL Queries from Computation 
Demonstration

Program synthesis
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Presentations: Analysis and Debugging

CheckCell: data debugging for spreadsheets

SQLCheck: Automated Detection and Diagnosis of SQL Anti-
Patterns
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Presentations: Performance Optimization

View-Centric Performance Optimization for Database-Backed 
Web Applications

AIDA - Abstraction for Advanced In-Database Analytics
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Summary

Manual/unit testing, code coverage, mutation testing

Test oracles: Differential testing, metamorphic testing, property-
based testing, intramorphic testing

Test case generation: generational vs. mutational, automated 
testing vs fuzzing

Test case reduction and deduplication


